Nilai lim_(x→1)⁡ ((x^2-1)tan⁡(2x-2))/sin^2 ⁡(x-1) =⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x^2-1)\tan (2x-2)}{\sin^2 (x-1)} = \cdots \)

  1. 1
  2. 2
  3. 4
  4. 6
  5. 8

Pembahasan:

\begin{aligned} \lim_{x \to 1} \ \frac{(x^2-1)\tan (2x-2)}{\sin^2 (x-1)} &= \lim_{x \to 1} \ \frac{(x-1)(x+1) \tan 2(x-1)}{\sin^2 (x-1)} \\[8pt] &= \lim_{x \to 1} \ (x+1) \cdot \lim_{x \to 1} \ \frac{(x-1)}{\sin (x-1)} \cdot \lim_{x \to 1} \ \frac{\tan 2(x-1)}{\sin (x-1)} \\[8pt] &= (1+1) \cdot 1 \cdot 2 \\[8pt] &= 4 \end{aligned}

Jawaban C.